Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
MMWR Morb Mortal Wkly Rep ; 72(22): 601-605, 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20237470

ABSTRACT

Changes in testing behaviors and reporting requirements have hampered the ability to estimate the U.S. SARS-CoV-2 incidence (1). Hybrid immunity (immunity derived from both previous infection and vaccination) has been reported to provide better protection than that from infection or vaccination alone (2). To estimate the incidence of infection and the prevalence of infection- or vaccination-induced antibodies (or both), data from a nationwide, longitudinal cohort of blood donors were analyzed. During the second quarter of 2021 (April-June), an estimated 68.4% of persons aged ≥16 years had infection- or vaccination-induced SARS-CoV-2 antibodies, including 47.5% from vaccination alone, 12.0% from infection alone, and 8.9% from both. By the third quarter of 2022 (July-September), 96.4% had SARS-CoV-2 antibodies from previous infection or vaccination, including 22.6% from infection alone and 26.1% from vaccination alone; 47.7% had hybrid immunity. Prevalence of hybrid immunity was lowest among persons aged ≥65 years (36.9%), the group with the highest risk for severe disease if infected, and was highest among those aged 16-29 years (59.6%). Low prevalence of infection-induced and hybrid immunity among older adults reflects the success of public health infection prevention efforts while also highlighting the importance of older adults staying up to date with recommended COVID-19 vaccination, including at least 1 bivalent dose.*,†.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Blood Donors , Incidence , Seroepidemiologic Studies , Antibodies, Viral , Vaccination
2.
MMWR Morb Mortal Wkly Rep ; 72(14): 355-361, 2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2261987

ABSTRACT

In the United States, respiratory syncytial virus (RSV) infections cause an estimated 58,000-80,000 hospitalizations among children aged <5 years (1,2) and 60,000-160,000 hospitalizations among adults aged ≥65 years each year (3-5). U.S. RSV epidemics typically follow seasonal patterns, peaking in December or January (6,7), but the COVID-19 pandemic disrupted RSV seasonality during 2020-2022 (8). To describe U.S. RSV seasonality during prepandemic and pandemic periods, polymerase chain reaction (PCR) test results reported to the National Respiratory and Enteric Virus Surveillance System (NREVSS)* during July 2017-February 2023 were analyzed. Seasonal RSV epidemics were defined as the weeks during which the percentage of PCR test results that were positive for RSV was ≥3% (9). Nationally, prepandemic seasons (2017-2020) began in October, peaked in December, and ended in April. During 2020-21, the typical winter RSV epidemic did not occur. The 2021-22 season began in May, peaked in July, and ended in January. The 2022-23 season started (June) and peaked (November) later than the 2021-22 season, but earlier than prepandemic seasons. In both prepandemic and pandemic periods, epidemics began earlier in Florida and the Southeast and later in regions further north and west. With several RSV prevention products in development,† ongoing monitoring of RSV circulation can guide the timing of RSV immunoprophylaxis and of clinical trials and postlicensure effectiveness studies. Although the timing of the 2022-23 season suggests that seasonal patterns are returning toward those observed in prepandemic years, clinicians should be aware that off-season RSV circulation might continue.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Adult , United States/epidemiology , Humans , Infant , Pandemics , COVID-19/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Florida/epidemiology , Seasons
3.
Open Forum Infect Dis ; 10(3): ofad091, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2261547

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests have had limited recommended clinical application during the coronavirus disease 2019 (COVID-19) pandemic. To inform clinical practice, an understanding is needed of current perspectives of United States-based infectious disease (ID) physicians on the use, interpretation, and need for SARS-CoV-2 antibody tests. Methods: In March 2022, members of the Emerging Infections Network (EIN), a national network of practicing ID physicians, were surveyed on types of SARS-CoV-2 antibody assays ordered, interpretation of test results, and clinical scenarios for which antibody tests were considered. Results: Of 1867 active EIN members, 747 (40%) responded. Among the 583 who managed or consulted on COVID-19 patients, a majority (434/583 [75%]) had ordered SARS-CoV-2 antibody tests and were comfortable interpreting positive (452/578 [78%]) and negative (405/562 [72%]) results. Antibody tests were used for diagnosing post-COVID-19 conditions (61%), identifying prior SARS-CoV-2 infection (60%), and differentiating prior infection and response to COVID-19 vaccination (37%). Less than a third of respondents had used antibody tests to assess need for additional vaccines or risk stratification. Lack of sufficient evidence for use and nonstandardized assays were among the most common barriers for ordering tests. Respondents indicated that statements from professional societies and government agencies would influence their decision to order SARS-CoV-2 antibody tests for clinical decision making. Conclusions: Practicing ID physicians are using SARS-CoV-2 antibody tests, and there is an unmet need for clarifying the appropriate use of these tests in clinical practice. Professional societies and US government agencies can support clinicians in the community through the creation of appropriate guidance.

4.
J Theor Biol ; 556: 111296, 2023 01 07.
Article in English | MEDLINE | ID: covidwho-2260758

ABSTRACT

Seroprevalence studies can estimate proportions of the population that have been infected or vaccinated, including infections that were not reported because of the lack of symptoms or testing. Based on information from studies in the United States from mid-summer 2020 through the end of 2021, we describe proportions of the population with antibodies to SARS-CoV-2 as functions of age and time. Slices through these surfaces at arbitrary times provide initial and target conditions for simulation modeling. They also provide the information needed to calculate age-specific forces of infection, attack rates, and - together with contact rates - age-specific probabilities of infection on contact between susceptible and infectious people. We modified the familiar Susceptible-Exposed-Infectious-Removed (SEIR) model to include features of the biology of COVID-19 that might affect transmission of SARS-CoV-2 and stratified by age and location. We consulted the primary literature or subject matter experts for contact rates and other parameter values. Using time-varying Oxford COVID-19 Government Response Tracker assessments of US state and DC efforts to mitigate the pandemic and compliance with non-pharmaceutical interventions (NPIs) from a YouGov survey fielded in the US during 2020, we estimate that the efficacy of social-distancing when possible and mask-wearing otherwise at reducing susceptibility or infectiousness was 31% during the fall of 2020. Initialized from seroprevalence among people having commercial laboratory tests for purposes other than SARS-CoV-2 infection assessments on 7 September 2020, our age- and location-stratified SEIR population model reproduces seroprevalence among members of the same population on 25 December 2020 quite well. Introducing vaccination mid-December 2020, first of healthcare and other essential workers, followed by older adults, people who were otherwise immunocompromised, and then progressively younger people, our metapopulation model reproduces seroprevalence among blood donors on 4 April 2021 less well, but we believe that the discrepancy is due to vaccinations being under-reported or blood donors being disproportionately vaccinated, if not both. As experimenting with reliable transmission models is the best way to assess the indirect effects of mitigation measures, we determined the impact of vaccination, conditional on NPIs. Results indicate that, during this period, vaccination substantially reduced infections, hospitalizations and deaths. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics."


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , United States/epidemiology , Aged , COVID-19/epidemiology , Seroepidemiologic Studies , Pandemics/prevention & control
5.
Clin Infect Dis ; 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2280723

ABSTRACT

BACKGROUND: There are limited data on the risk of SARS-CoV-2 infection in the U.S. by occupation. We identified occupations at higher risk for prior SARS-CoV-2 infection as defined by the presence of infection-induced antibodies among U.S. blood donors. METHODS: Using a nested case-control study design, blood donors during May-December 2021 with anti-nucleocapsid (anti-N) testing were sent an electronic survey on employment status, vaccination, and occupation. The association between previous SARS-CoV-2 infection and occupation-specific in-person work was estimated using multivariable logistic regression adjusting for sex, age, month of donation, race/ethnicity, education, vaccination, and telework. RESULTS: Among 85,986 included survey respondents, 9,504 (11.1%) were anti-N reactive. Healthcare support (20.3%), protective service (19.9%), and food preparation and serving related occupations (19.7%) had the highest proportion of prior infection. After adjustment, prior SARS-CoV-2 infection was associated with healthcare practitioners (adjusted OR [aOR] 2.10, 95% CI 1.74-2.54) and healthcare support (aOR 1.83, 95% CI 1.39-2.40) occupations compared with computer and mathematical occupations as the referent group. Lack of COVID-19 vaccination (aOR 16.13, 95% CI 15.01-17.34) and never teleworking (aOR 1.17, 95% CI 1.05-1.30) were also independently associated with prior SARS-CoV-2 infection. Protective service occupations had the highest proportion of unvaccinated workers (30.0%). CONCLUSIONS: Workers in healthcare, protective services, and food preparation had the highest prevalence of prior SARS-CoV-2 infection. Occupational risks for SARS-CoV-2 infection remained after adjusting for vaccination, telework, and demographic factors. These findings underscore the need for mitigation measures and personal protection in healthcare settings and other workplaces.

6.
J Infect Dis ; 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2228994

ABSTRACT

BACKGROUND AND OBJECTIVES: Trends in estimates of US pediatric SARS-CoV-2 infection-induced seroprevalence from commercial laboratory specimens may overrepresent children with frequent healthcare needs. We examined seroprevalence trends and compared seroprevalence estimates by testing type and diagnostic coding. METHODS: Cross-sectional convenience samples of residual sera between September 2021 and February 2022 from 52 U.S. jurisdictions were assayed for infection-induced SARS-CoV-2 antibodies; monthly seroprevalence estimates were calculated by age group. Multivariate logistic analyses compared seroprevalence estimates for specimens associated with ICD-10 codes and laboratory orders indicating well-child care with estimates for other pediatric specimens. RESULTS: Infection-induced SARS-CoV-2 seroprevalence increased in each age group; from 30% to 68% (1-4 years), 38% to 77% (5-11 years), and 40% to 74% (12-17 years). On multivariate analysis, patients with well-child ICD-10 codes were seropositive more often than other patients aged 1-17 years (adjusted prevalence ratio [aPR] 1.04; 95% CI 1.02-1.07); children aged 9-11 years receiving standard lipid screening were seropositive more often than those receiving other laboratory tests (1.05; 1.02-1.08). CONCLUSIONS: Infection-induced seroprevalence more than doubled among children under 12 between September 2021 and February 2022, and increased 85% in adolescents. Differences in seroprevalence by care type did not substantially impact US pediatric seroprevalence estimates.

7.
Lancet regional health Americas ; 18:100403-100403, 2022.
Article in English | EuropePMC | ID: covidwho-2147777

ABSTRACT

Background Sero-surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can reveal trends and differences in subgroups and capture undetected or unreported infections that are not included in case-based surveillance systems. Methods Cross-sectional, convenience samples of remnant sera from clinical laboratories from 51 U.S. jurisdictions were assayed for infection-induced SARS-CoV-2 antibodies biweekly from October 25, 2020, to July 11, 2021, and monthly from September 6, 2021, to February 26, 2022. Test results were analyzed for trends in infection-induced, nucleocapsid-protein seroprevalence using mixed effects models that adjusted for demographic variables and assay type. Findings Analyses of 1,469,792 serum specimens revealed U.S. infection-induced SARS-CoV-2 seroprevalence increased from 8.0% (95% confidence interval (CI): 7.9%–8.1%) in November 2020 to 58.2% (CI: 57.4%–58.9%) in February 2022. The U.S. ratio of the change in estimated seroprevalence to the change in reported case prevalence was 2.8 (CI: 2.8–2.9) during winter 2020–2021, 2.3 (CI: 2.0–2.5) during summer 2021, and 3.1 (CI: 3.0–3.3) during winter 2021–2022. Change in seroprevalence to change in case prevalence ratios ranged from 2.6 (CI: 2.3–2.8) to 3.5 (CI: 3.3–3.7) by region in winter 2021–2022. Interpretation Ratios of the change in seroprevalence to the change in case prevalence suggest a high proportion of infections were not detected by case-based surveillance during periods of increased transmission. The largest increases in the seroprevalence to case prevalence ratios coincided with the spread of the B.1.1.529 (Omicron) variant and with increased accessibility of home testing. Ratios varied by region and season with the highest ratios in the midwestern and southern United States during winter 2021–2022. Our results demonstrate that reported case counts did not fully capture differing underlying infection rates and demonstrate the value of sero-surveillance in understanding the full burden of infection. Levels of infection-induced antibody seroprevalence, particularly spikes during periods of increased transmission, are important to contextualize vaccine effectiveness data as the susceptibility to infection of the U.S. population changes. Funding This work was supported by the 10.13039/100000030Centers for Disease Control and Prevention, Atlanta, Georgia.

8.
Sci Data ; 9(1): 727, 2022 11 26.
Article in English | MEDLINE | ID: covidwho-2133502

ABSTRACT

Seroprevalence studies provide useful information about the proportion of the population either vaccinated against SARS-CoV-2, previously infected with the virus, or both. Numerous studies have been conducted in the United States, but differ substantially by dates of enrollment, target population, geographic location, age distribution, and assays used. This can make it challenging to identify and synthesize available seroprevalence data by geographic region or to compare infection-induced versus combined infection- and vaccination-induced seroprevalence. To facilitate public access and understanding, the National Institutes of Health and the Centers for Disease Control and Prevention developed the COVID-19 Seroprevalence Studies Hub (COVID-19 SeroHub, https://covid19serohub.nih.gov/ ), a data repository in which seroprevalence studies are systematically identified, extracted using a standard format, and summarized through an interactive interface. Within COVID-19 SeroHub, users can explore and download data from 178 studies as of September 1, 2022. Tools allow users to filter results and visualize trends over time, geography, population, age, and antigen target. Because COVID-19 remains an ongoing pandemic, we will continue to identify and include future studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Seroepidemiologic Studies , Humans , United States , Vaccination
9.
Lancet Reg Health Am ; 18: 100403, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2131781

ABSTRACT

Background: Sero-surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can reveal trends and differences in subgroups and capture undetected or unreported infections that are not included in case-based surveillance systems. Methods: Cross-sectional, convenience samples of remnant sera from clinical laboratories from 51 U.S. jurisdictions were assayed for infection-induced SARS-CoV-2 antibodies biweekly from October 25, 2020, to July 11, 2021, and monthly from September 6, 2021, to February 26, 2022. Test results were analyzed for trends in infection-induced, nucleocapsid-protein seroprevalence using mixed effects models that adjusted for demographic variables and assay type. Findings: Analyses of 1,469,792 serum specimens revealed U.S. infection-induced SARS-CoV-2 seroprevalence increased from 8.0% (95% confidence interval (CI): 7.9%-8.1%) in November 2020 to 58.2% (CI: 57.4%-58.9%) in February 2022. The U.S. ratio of the change in estimated seroprevalence to the change in reported case prevalence was 2.8 (CI: 2.8-2.9) during winter 2020-2021, 2.3 (CI: 2.0-2.5) during summer 2021, and 3.1 (CI: 3.0-3.3) during winter 2021-2022. Change in seroprevalence to change in case prevalence ratios ranged from 2.6 (CI: 2.3-2.8) to 3.5 (CI: 3.3-3.7) by region in winter 2021-2022. Interpretation: Ratios of the change in seroprevalence to the change in case prevalence suggest a high proportion of infections were not detected by case-based surveillance during periods of increased transmission. The largest increases in the seroprevalence to case prevalence ratios coincided with the spread of the B.1.1.529 (Omicron) variant and with increased accessibility of home testing. Ratios varied by region and season with the highest ratios in the midwestern and southern United States during winter 2021-2022. Our results demonstrate that reported case counts did not fully capture differing underlying infection rates and demonstrate the value of sero-surveillance in understanding the full burden of infection. Levels of infection-induced antibody seroprevalence, particularly spikes during periods of increased transmission, are important to contextualize vaccine effectiveness data as the susceptibility to infection of the U.S. population changes. Funding: This work was supported by the Centers for Disease Control and Prevention, Atlanta, Georgia.

10.
J Infect Dis ; 226(9): 1556-1561, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2097370

ABSTRACT

BACKGROUND: To inform public health policy, it is critical to monitor coronavirus disease 2019 vaccine effectiveness (VE), including against acquiring infection. METHODS: We estimated VE using self-reported vaccination in a retrospective cohort of repeat blood donors who donated during the first half of 2021, and we demonstrated a viable approach for monitoring VE via serological surveillance. RESULTS: Using Poisson regression, we estimated an overall VE of 88.8% (95% confidence interval, 86.2-91.1), adjusted for demographic covariates and variable baseline risk. CONCLUSIONS: The time since first reporting vaccination, age, race and/or ethnicity, region, and calendar time were statistically significant predictors of incident infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , United States , Retrospective Studies , Blood Donors , Vaccine Efficacy , Cohort Studies
11.
MMWR Morb Mortal Wkly Rep ; 71(40): 1265-1270, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2056549

ABSTRACT

Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM.


Subject(s)
Asthma , COVID-19 , Enterovirus D, Human , Enterovirus Infections , Myelitis , Respiratory Tract Infections , Adolescent , Asthma/epidemiology , Central Nervous System Viral Diseases , Child , Disease Outbreaks , Enterovirus Infections/epidemiology , Humans , Myelitis/epidemiology , Neuromuscular Diseases , Respiratory Tract Infections/epidemiology , Rhinovirus , United States/epidemiology
12.
Clin Infect Dis ; 75(Supplement_2): S254-S263, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2051341

ABSTRACT

BACKGROUND: Previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) vaccination, independently and combined ("hybrid immunity"), result in partial protection from subsequent infection and strong protection from severe disease. Proportions of the US population who have been infected, vaccinated, or have hybrid immunity remain unclear, posing a challenge for assessing effective pandemic mitigation strategies. METHODS: In this serial cross-sectional study, nationwide blood donor specimens collected during January-December 2021 were tested for anti-spike and anti-nucleocapsid antibodies, and donor COVID-19 vaccination history of ≥1 dose was collected. Monthly seroprevalence induced from SARS-CoV-2 infection, COVID-19 vaccination, or both, were estimated. Estimates were weighted to account for demographic differences from the general population and were compared temporally and by demographic factors. RESULTS: Overall, 1 123 855 blood samples were assayed. From January to December 2021, the weighted percentage of donations with seropositivity changed as follows: seropositivity due to vaccination without previous infection, increase from 3.5% (95% confidence interval, 3.4%-3.7%) to 64.0%, (63.5%-64.5%); seropositivity due to previous infection without vaccination, decrease from 15.6% (15.2%-16.0%) to 11.7% (11.4%-12.0%); and seropositivity due to hybrid immunity, increase from 0.7% (0.6%-0.7%) to 18.9% (18.5%-19.3%). Combined seroprevalence from infection, vaccination, or both increased from 19.8% (19.3%-20.2%) to 94.5% (93.5%-94.0%). Infection- and vaccination-induced antibody responses varied significantly by age, race-ethnicity, and region, but not by sex. CONCLUSIONS: Our results indicate substantial increases in population humoral immunity from SARS-CoV-2 infection, COVID-19 vaccination, and hybrid immunity during 2021. These findings are important to consider in future COVID-19 studies and long-term pandemic mitigation efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Seroepidemiologic Studies , Vaccination
13.
Clin Infect Dis ; 75(Supplement_2): S264-S270, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2051340

ABSTRACT

BACKGROUND: We assess if state-issued nonpharmaceutical interventions (NPIs) are associated with reduced rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as measured through anti-nucleocapsid (anti-N) seroprevalence, a proxy for cumulative prior infection that distinguishes seropositivity from vaccination. METHODS: Monthly anti-N seroprevalence during 1 August 2020 to 30 March 2021 was estimated using a nationwide blood donor serosurvey. Using multivariable logistic regression models, we measured the association of seropositivity and state-issued, county-specific NPIs for mask mandates, gathering bans, and bar closures. RESULTS: Compared with individuals living in a county with all three NPIs in place, the odds of having anti-N antibodies were 2.2 (95% confidence interval [CI]: 2.0-2.3) times higher for people living in a county that did not have any of the 3 NPIs, 1.6 (95% CI: 1.5-1.7) times higher for people living in a county that only had a mask mandate and gathering ban policy, and 1.4 (95% CI: 1.3-1.5) times higher for people living in a county that had only a mask mandate. CONCLUSIONS: Consistent with studies assessing NPIs relative to COVID-19 incidence and mortality, the presence of NPIs were associated with lower SARS-CoV-2 seroprevalence indicating lower rates of cumulative infections. Multiple NPIs are likely more effective than single NPIs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Seroepidemiologic Studies , United States/epidemiology
14.
Journal of theoretical biology ; 2022.
Article in English | EuropePMC | ID: covidwho-2045579

ABSTRACT

Seroprevalence studies can estimate proportions of the population that have been infected or vaccinated, including infections that were not reported because of the lack of symptoms or testing. Based on information from studies in the United States from mid-summer 2020 through the end of 2021, we describe proportions of the population with antibodies to SARS-CoV-2 as functions of age and time. Slices through these surfaces at arbitrary times provide initial and target conditions for simulation modeling. They also provide the information needed to calculate age-specific forces of infection, attack rates, and – together with contact rates – age-specific probabilities of infection on contact between susceptible and infectious people. We modified the familiar Susceptible-Exposed-Infectious-Removed (SEIR) model to include features of the biology of COVID-19 that might affect transmission of SARS-CoV-2 and stratified by age and location. We consulted the primary literature or subject matter experts for contact rates and other parameter values. Using time-varying Oxford COVID-19 Government Response Tracker assessments of US state and DC efforts to mitigate the pandemic and compliance with non-pharmaceutical interventions (NPIs) from a YouGov survey fielded in the US during 2020, we estimate that the efficacy of social-distancing when possible and mask-wearing otherwise at reducing susceptibility or infectiousness was 31% during the fall of 2020. Initialized from seroprevalence among people having commercial laboratory tests for purposes other than SARS-CoV-2 infection assessments on 7 September 2020, our age- and location-stratified SEIR population model reproduces seroprevalence among members of the same population on 25 December 2020 quite well. Introducing vaccination mid-December 2020, first of healthcare and other essential workers, followed by older adults, people who were otherwise immunocompromised, and then progressively younger people, our metapopulation model reproduces seroprevalence among blood donors on 4 April 2021 less well, but we believe that the discrepancy is due to vaccinations being under-reported or blood donors being disproportionately vaccinated, if not both. As experimenting with reliable transmission models is the best way to assess the indirect effects of mitigation measures, we determined the impact of vaccination, conditional on NPIs. Results indicate that, during this period, vaccination substantially reduced infections, hospitalizations and deaths. This manuscript was submitted as part of a theme issue on “Modelling COVID-19 and Preparedness for Future Pandemics.”

15.
Open Forum Infect Dis ; 9(7): ofac221, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2018027

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmissible through lung transplantation, and outcomes among infected organ recipients may be severe. Transmission risk to extrapulmonary organ recipients and recent (within 30 days of transplantation) SARS-CoV-2-infected recipient outcomes are unclear. Methods: During March 2020-March 2021, potential SARS-CoV-2 transmissions through solid organ transplantation were investigated. Assessments included SARS-CoV-2 testing, medical record review, determination of likely transmission route, and recent recipient outcomes. Results: During March 2020-March 2021, approximately 42 740 organs were transplanted in the United States. Forty donors, who donated 140 organs to 125 recipients, were investigated. Nine (23%) donors and 25 (20%) recipients were SARS-CoV-2 positive by nucleic acid amplification test (NAAT). Most (22/25 [88%]) SARS-CoV-2-infected recipients had healthcare or community exposures. Nine SARS-CoV-2-infected donors donated 21 organs to 19 recipients. Of these, 3 lung recipients acquired SARS-CoV-2 infections from donors with negative SARS-CoV-2 testing of pretransplant upper respiratory tract specimens but from whom posttransplant lower respiratory tract (LRT) specimens were SARS-CoV-2 positive. Sixteen recipients of extrapulmonary organs from SARS-CoV-2-infected donors had no evidence of posttransplant COVID-19. All-cause mortality within 45 days after transplantation was 6-fold higher among SARS-CoV-2-infected recipients (9/25 [36%]) than those without (6/100 [6%]). Conclusions: Transplant-transmission of SARS-CoV-2 is uncommon. Pretransplant NAAT of lung donor LRT specimens may prevent transmission of SARS-CoV-2 through transplantation. Extrapulmonary organs from SARS-CoV-2-infected donors may be safely usable, although further study is needed. Reducing recent recipient exposures to SARS-CoV-2 should remain a focus of prevention.

17.
Microbiol Spectr ; 10(4): e0124722, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1950018

ABSTRACT

Previous COVID-19 vaccine efficacy (VE) studies have estimated neutralizing and binding antibody concentrations that correlate with protection from symptomatic infection; how these estimates compare to those generated in response to SARS-CoV-2 infection is unclear. Here, we assessed quantitative neutralizing and binding antibody concentrations using standardized SARS-CoV-2 assays on 3,067 serum specimens collected during 27 July 2020 to 27 August 2020 from COVID-19-unvaccinated persons with detectable anti-SARS-CoV-2 antibodies. Neutralizing and binding antibody concentrations were severalfold lower in the unvaccinated study population compared to published concentrations at 28 days postvaccination. In this convenience sample, ~88% of neutralizing and ~63 to 86% of binding antibody concentrations met or exceeded concentrations associated with 70% COVID-19 VE against symptomatic infection; ~30% of neutralizing and 1 to 14% of binding antibody concentrations met or exceeded concentrations associated with 90% COVID-19 VE. Our study not only supports observations of infection-induced immunity and current recommendations for vaccination postinfection to maximize protection against COVID-19, but also provides a large data set of pre-COVID-19 vaccination anti-SARS-CoV-2 antibody concentrations that will serve as an important comparator in the current setting of vaccine-induced and hybrid immunity. As new SARS-CoV-2 variants emerge and displace circulating virus strains, we recommend that standardized binding antibody assays that include spike protein-based antigens be utilized to estimate antibody concentrations correlated with protection from COVID-19. These estimates will be helpful in informing public health guidance, such as the need for additional COVID-19 vaccine booster doses to prevent symptomatic infection. IMPORTANCE Although COVID-19 vaccine efficacy (VE) studies have estimated antibody concentrations that correlate with protection from COVID-19, how these estimates compare to those generated in response to SARS-CoV-2 infection is unclear. We assessed quantitative neutralizing and binding antibody concentrations using standardized assays on serum specimens collected from COVID-19-unvaccinated persons with detectable antibodies. We found that most unvaccinated persons with qualitative antibody evidence of prior infection had quantitative antibody concentrations that met or exceeded concentrations associated with 70% VE against COVID-19. However, only a small proportion had antibody concentrations that met or exceeded concentrations associated with 90% VE, suggesting that persons with prior COVID-19 would benefit from vaccination to maximize protective antibody concentrations against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , Immunization, Secondary , Vaccine Efficacy , COVID-19 Serotherapy
18.
MMWR Morb Mortal Wkly Rep ; 71(26): 859-868, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1912316

ABSTRACT

On June 17, 2022, the Food and Drug Administration (FDA) issued Emergency Use Authorization (EUA) amendments for the mRNA-1273 (Moderna) COVID-19 vaccine for use in children aged 6 months-5 years, administered as 2 doses (25 µg [0.25 mL] each), 4 weeks apart, and BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine for use in children aged 6 months-4 years, administered as 3 doses (3 µg [0.2 mL] each), at intervals of 3 weeks between doses 1 and 2 and ≥8 weeks between doses 2 and 3. On June 18, 2022, the Advisory Committee on Immunization Practices (ACIP) issued separate interim recommendations for use of the Moderna COVID-19 vaccine in children aged 6 months-5 years and the Pfizer-BioNTech COVID-19 vaccine in children aged 6 months-4 years for the prevention of COVID-19.* Both the Moderna and Pfizer-BioNTech COVID-19 vaccines met the criteria for immunobridging, which is the comparison of neutralizing antibody levels postvaccination in young children with those in young adults in whom efficacy had been demonstrated. Descriptive efficacy analyses were also conducted for both Moderna and Pfizer-BioNTech COVID-19 vaccines during the period when the Omicron variant of SARS-CoV-2 (the virus that causes COVID-19) predominated. No specific safety concerns were identified among recipients of either vaccine. ACIP recommendations for the use of the Moderna COVID-19 vaccine and the Pfizer-BioNTech COVID-19 vaccine in children aged 6 months-5 years and 6 months-4 years, respectively, are interim and will be updated as additional information becomes available. Vaccination is important for protecting children aged 6 months-5 years against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Advisory Committees , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Humans , Immunization , SARS-CoV-2 , United States/epidemiology , Vaccination , Young Adult
19.
Clin Infect Dis ; 75(1): e133-e143, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1868253

ABSTRACT

BACKGROUND: Most studies on health disparities during the coronavirus disease 2019 (COVID-19) pandemic focused on reported cases and deaths, which are influenced by testing availability and access to care. This study aimed to examine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody seroprevalence in the United States and its associations with race/ethnicity, rurality, and social vulnerability over time. METHODS: This repeated cross-sectional study used data from blood donations in 50 states and Washington, DC, from July 2020 through June 2021. Donor zip codes were matched to counties and linked with Social Vulnerability Index (SVI) and urban-rural classification. SARS-CoV-2 antibody seroprevalences induced by infection and infection-vaccination combined were estimated. Association of infection-induced seropositivity with demographics, rurality, SVI, and its 4 themes were quantified using multivariate regression models. RESULTS: Weighted seroprevalence differed significantly by race/ethnicity and rurality, and increased with increasing social vulnerability. During the study period, infection-induced seroprevalence increased from 1.6% to 27.2% and 3.7% to 20.0% in rural and urban counties, respectively, while rural counties had lower combined infection- and vaccination-induced seroprevalence (80.0% vs 88.1%) in June 2021. Infection-induced seropositivity was associated with being Hispanic, non-Hispanic Black, and living in rural or more socially vulnerable counties, after adjusting for demographic and geographic covariates. CONCLUSIONS: The findings demonstrated increasing SARS-CoV-2 seroprevalence in the United States across all geographic, demographic, and social sectors. The study illustrated disparities by race-ethnicity, rurality, and social vulnerability. The findings identified areas for targeted vaccination strategies and can inform efforts to reduce inequities and prepare for future outbreaks.


Subject(s)
COVID-19 , Infections , Antibodies, Viral , Blood Donors , COVID-19/epidemiology , Cross-Sectional Studies , Humans , SARS-CoV-2 , Seroepidemiologic Studies , Social Vulnerability , United States/epidemiology
20.
Transfusion ; 62(7): 1321-1333, 2022 07.
Article in English | MEDLINE | ID: covidwho-1861558

ABSTRACT

BACKGROUND: A national serosurvey of U.S. blood donors conducted in partnership with the Centers for Disease Control and Prevention (CDC) was initiated to estimate the prevalence of SARS-CoV-2 infections and vaccinations. METHODS: Beginning in July 2020, the Nationwide Blood Donor Seroprevalence Study collaborated with multiple blood collection organizations, testing labs, and leadership from government partners to capture, test, and analyze approximately 150,000 blood donation specimens per month in a repeated, cross-sectional seroprevalence survey. RESULTS: A CDC website (https://covid.cdc.gov/covid-data-tracker/#nationwide-blood-donor-seroprevalence) provided stratified, population-level results to public health professionals and the general public. DISCUSSION: The study adapted operations as the pandemic evolved, changing specimen flow and testing algorithms, and collecting additional data elements in response to changing policies on universal blood donation screening and administration of SARS-CoV-2 spike-based vaccines. The national serosurvey demonstrated the utility of serosurveillance testing of residual blood donations and highlighted the role of the blood collection industry in public-private partnerships during a public health emergency.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Pandemics , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL